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Tests of the “‘Beta Model”
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The general stochastic learning models that have been previously studied
[1] postulate a probability distribution

Pn = {pﬂ(l)r pﬂ(z)r TS pn(”)}

over the set of r alternatives available to an organism. This vector gives the
probability that each alternative will be chosen on trial #. A transition opera-
tor T is postulated such that (i) T does not depend upon # (independence
of path); (ii) T depends upon the choice made on trial # and on the outcome;
and (iii) ppsr = Tpn.

For the most part linear (matrix) operators have been studied—partly be-
cause their mathematical properties are comparatively simple, partly because
of Estes’ stimulus-sampling rationale (3], and partly because the combining-of-
classes condition ([1], [2]) leads to a particular type of linear operator. None-
theless, it is still an open question whether linearity is a tenable assumption
or whether one of the possible nonlinear operators will be better able to de-
scribe data. The problem, of course, is how to select among all the possible
nonlinear operators.

The purpose of this paper is to study some properties of a nonlinear model,
called the beta model, and to apply it to three published experiments
(Chapter 14 and [6]). The linear model, called the alpha model, and the beta
model can both be arrived at from the same general considerations. For
this reason, comparisons between these two models are made.

Response-Strength Models

Some learning theorists ([4], [7]) consider response frequencies and their
underlying probabilities to be the manifestation in behavior of some latent
construct called response strength. Earlier stochastic learning models have

1 This research was supported in part by the National Science Foundation (grant
NSF-G 2803), the American Philosophical Society, and the Nationa! Institute of Mental
Health (grant M-2293).
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been criticized for their failure to postulate the source of the response prob-
abilities with which they deal. Recently, the response-strength notion has
been formalized [5]; we review it briefly here and then investigate some of
its consequences.

Suppose that z is an alternative in the set S, which, in turn, is a subset
of the finite set 7. Let Pg () denote the probability that ¢ is chosen when
the choice is confined to S and Pr(z|S), the probability that ¢ is chosen when
the choice is confined to 7, conditional on its being in S. If Py, () #0 or
1, where ¢ and j are in 7, then we postulate

Ps(5) = Pri|S) .

This axiom leads to the conclusion that there exists a ratio scale, v, over
the alternatives with the properties

. v@)
(1) Ps(l)—v——é 0@

and
(2) v@) >0, forallie T.

This v-scale, which in psychophysical problems appears to be closely related
to scales that have been studied earlier, is presumed to be the formal coun-
terpart of response strength. For many purposes, this scale may be more
useful than the choice probabilities themselves.

In most learning experiments the set of alternatives is fixed, and so one
cannot make a direct check of the axiom that leads to the v-scale; however,
since this axiom refers to an organism, not to an experiment, it is meaningful
to study its consequences for learning. We formulate the learning process as
sequential transitions of the v-vector, and let this stochastic process indirectly
determine the response probabilities via Equation 1.

Let v, = {va(1), va(2), - - -, va(#)} denote this vector on trial » and let 7 now
denote a path-independent operator at the level of the »'s. The transition
equation is

(3) Up4) = Tvn.

The problem is to restrict 7. By Equation 2, the »'s must be positive; hence,
if Tv is a distribution of v-values, we must have

(4) Tv>0, if v>0,

where 0 is the r-dimensional zero vector. A second condition stems from the
fact that v is a ratio scale; therefore, we can multiply all values in the model
by any positive constant k. In particular, the equality in Equation 3 should
not be affected, so we must have

(5) kTv, = Tkv., if 6>0.

This has been called the independence-of-unit condition. If it is not met,
then in principle we could determine the unit of the wv-scale from learning
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data. These first two limitations seem basic to the way our problem is for-
mulated. However, Equations 4 and 5 do not narrow down T sufficiently,
and, unfortunately, no other conditions seem to follow from the basic choice
axiom. Thus, we are forced to make substantive assumptions that are sug-
gested largely by mathematical considerations. First, we note that Equation
5 is one of the two properties that are usually used in defining a linear
transformation; the other is

(6) To+vY)= Tv+ To*, if v,v*>0.

Often this is called the superposition condition. Even though it is difficult to
give an intuitive interpretation for Equation 6 because the addition of two
v-vectors does not correspond naturally to any experimental manipulation, we
shall impose the condition.

Finally, we shall assume that any positive real number is a possible v-scale
value; hence, there is no upper bound to the possible values. This assump-
tion together with Equations 5 and 6 implies that the transformation 7' must
be a matrix operator 7, in which case Equation 3 becomes the matrix equa-
tion
(7) Une1 = TOn,

where v denotes a column vector. Equation 4 implies that 7 is nonsingular
and has nonnegative entries.

The Two-Alternative Alpha Model. For two alternatives, Equation 7 be-
comes

(8) I:Un+1(1):] _ I:tu tlz:] I:Un(l)] A
Un41(2) | 2SR 2 v(2)

Although, in principle, we could work with Equation 8 in its full generality,
in practice there are too many parameters. Each operator has four, and
there is usually more than one operator. So we are forced to consider fur-
ther restrictions.

A question that immediately comes to mind is whether there is any speciali-
zation that leads to an operator that is linear in the probabilities. It is not

difficult to show (see [5]) that a necessary and sufficient condition is that
the column sums of T be equal, i.e.,

(9) t11+121=t12+122.

This specialization is the alpha model. Observe that Equation 9 implies that
the sum of the scale values on trial » + 1 is simply ¢ + £ times the sum
of the scale values on trial ». This means that, independent of how the
total scale value is distributed between the two alternatives, experience on a
given trial augments or diminishes that sum by a fixed factor; however, the
change in the scale value for a particular alternative is not independent of
the distribution over the alternatives. Thus, for example, if alternative 1 is
chosen and rewarded on trial #, v.+1(1) depends not only upon va(1) but also
upon v,(2) (the propensity to choose alternative 2).

The Two-Alternative Beta Model. The last observation suggests the other
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model that we examine. We postulate that v.+..(z) depends upon w.(f), but
not upon the scale value of the other alternative. This means that the ma-
trix 7T in Equation 8 must be diagonal, i.e.,

(10) Un+1(1) = tnvn(l) s Un+1(2) = tgz‘lln(Z) -
From Equation 1 and Equation 10 we have

Vn41(l) _ t1va(1)
Vne1(1) + 0241(2) - t10a(1) + f2ata(2)

pn+1(1) =

Un(l)
— A v(2)

Un(1)

where B = tn/fzz. But

vall) _ D)
(2 T—pu)

S0
_ Bpn(1)

(11) Prar(l) = __—_(ﬁ' “)p 1

Of course,

:(2)
Pa(2) + A1 — pa(2)]

We observe that, like the alpha model, the beta model can be expressed in
terms of path-independent operators acting upon the probabilities. So both
models are path-independent at both the level of the #’s and the level of the
p’s, both are linear at the level of the v’s, but only the alpha model is also
linear at the level of the p's.?

For experiments in which one outcome always follows alternative 1 and
another outcome always follows alternative 2, the transition law for p. = p.(2) is

pn
P+ Byl — pr)

bPn

pn-l-l(z) =1- Pn+1(1) =

if alternative 1 occurs
(12) Prer =

if alternative 2 occurs .

Because p. is the probability of an error, we anticipate that [, > 1 and
B > 1.

2 In {5], a somewhat different derivation of the beta model is given, based, in essence,
on the condition leading to Equation 10. This condition, without explicitly assuming
superposition, then leads to Equation 10. One merit of this approach is that it suggests
a third model which differs from the beta mode! only in that the unboundedness condi-
tion is replaced by the condition that the »’s are bounded from above. This model is
linear and path-independent at the level of the v’s, but is not path-independent at the
level of the p’'s.
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Estimation of Reta-Model Parameters

To estimate model parameters from a set of data, it is useful—and with
three or more parameters, almost essential—to have explicit formulas for
properties of the model as functions of its parameters. These functions may
then be equated to the corresponding statistics of the data and solved to give
estimates of the parameters. Preferably, these expressions should be in
closed form, but infinite series are acceptable since tables can be prepared.
For the alpha model restricted in various ways, a number of closed expres-
sions are known and several tables have been published. For the beta model,
the situation is far less satisfactory because its nonlinearity makes it very
difficult to calculate expected values. In fact, for two alternatives with
partial reinforcement of each, no computable expression is known for any
property of the model. If, however, we are willing to confine our attention
to those experiments in which one of the alternatives, say 2, is never re-
warded, then a series can be developed for the expected number of trials
before the other alternative is chosen. This can be used not only with ex-
periments in which alternative 1 is always rewarded and 2 never rewarded
(100 : 0 experiments), but also with experiments in which alternative 1 is
rewarded with probability = while alternative 2 is never rewarded (50: 0 ex-
periments, for example).

Let p. denote the probability that alternative 2 is chosen (i.e., an error is
made) on trial #, and let v + 1 denote the trial number when alternative 1
is first chosen (i.e., the trial number of the first success). Thus, v denotes
the number of trials before the first success. Because these trials are in-
dependent,

Priv=Fk) = (Ifll pill — pes) .
Hence,
(13) Ew)= S kPro =k - S k1 — pM)fIl pi.

Let 8 denote the beta-model parameter of the (nonreward) operator that is
always applied when alternative 2 is chosen. By induction on Equation 12 it
is clear that for any # < v + 1,

v
v+ B/

where we have defined v = 1, (2)/v:(1) = p1/(1 — p1). Substituting Equation 14
in Equation 13, we obtain

19 Ew =St - | i [ ]

) Bk ‘] vE
=3¢k
i [v—kﬁ“_]ﬁ (0 + B
f=1 ¢

(14) [71:4-1 =
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ke L[
_ i kRxyx 3 1—p
B TS r

k=1 * 1k b
1 y b
liw+ 8 11_10|_1_pl+ﬁf]

The final infinite series for the expected number of trials before the first
success, which is an example of a function we denote by L(p, ), can be com-
puted to any degree of accuracy for any p and B. This is not simple, how-
ever, when both parameters are near 1; for example, when p = 0.9995 and
8 = 1.03, one needs 227 terms to obtain accuracy in the third decimal place.
For the experiments that we will analyze, p is very close to 1; hence, we were
led to have a table of L(p, 3) prepared by the Univac computer at the Univer-
sity of Pennsylvania. The table is given at the end of this paper.

With a value of E(v), Equation 15 imposes a relationship between p and 3,
but it does not specify either parameter uniquely. Thus, one must either
estimate one of the parameters independently or undertake a trial-and-error
exploration of the parameter space using Monte Carlo methods (to match
other statistics of the data, such as the total number of errors). For example,
in a 100: 0 experiment, if there are sufficiently many subjects that the choices
on trial 1 can be used to estimate p accurately, then the trials to the first
success determine the nonreward parameter 3.. This still leaves the param-
eter A of the reward operator unspecified.

Now observe that if we go to a final trial, N, we can estimate px from
the observed number of choices on that trial, and if we proceed backwards
from that trial to the last error, then only the reward operator will be ap-
plied during these trials. Thus, L(1 — px, 81) gives the expected number of
trials between the last error and the final trial. Matching this expected value
to the observed value provides an estimate of (.

The method just described does not require that we use the estimated prob-
ability on the first and last trials, and in fact we do not. Rather, we used
the observed mean learning curve to judge the trial numbers (not necessarily
integers) for which the proportion of errors is 0.95 and 0.05. The mean
number of trials to the first success and to the last failure from these trials,
respectively, was determined, and £3: and 3. were thereby estimated from
the table of L(p, 8), The initial probability, p;, was estimated by applying
the inverse of the nonreward operator from the 0.95 trial to the first trial.
For example, if the 0.95 trial is 8 and ﬁz = 1.3, then vy = 0.95/0.05 =19 and
so v, = (1.3)% (19) = 154.98. Thus,

_ 154.98

b= 155.98 0.99 .

The choice of the points 0.95 and 0.05 is based upon two considerations.
First, the probability should not be very far from 1 if the inverse of the
nonreward operator can be legitimately applied to estimate the initial prob-
ability. Second, if p is very near 1, the mean and variance of the trials to
the first success becomes very large, and the estimate of 8 will not be very
stable.

K
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Parameter Estimation. We estimated the beta-model parameters for period
2 with the method used before. The values are $;=0.996, A;=1.10, f,=1.32.
As found in the previous two experiments, ég is larger than B:. However, ﬁ,
in this experiment is smaller than it was in the previous T-maze experiment.

Goodness-of-Fit. As before, Monte Carlo computations were made and
various statistics computed. In Table 2, these are compared with corres-
ponding statistics of the data and population values computed from the alpha
model. The mean performance curves for the experimental animals and
for the Monte Carlo runs are shown in Fig. 1.
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FIGURE 1. Period 2 of the overlearning experiment showing the average re-
sponse frequencies in three-trial blocks for the experimental ani-
mals (filled circles) and for the beta-model Monte Carlo analogs
(open circles).
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TABLE 2

Comparison of Several Statistics of the Overlearning Experiment
with Statistics Obtained for the Two Models

Statistic Real Rats A(lEngeIZ{ggel ?se::t.h}g:;isl
Values)

Mean total errors 24.68 24.62 24.40

Variance of total errors 5.01 26.57 3.33
Mean trials before first success 13.32 12.53 14.24
Mean number of error runs 6.11 7.03 6.24
Mean error runs of length 1 3.1 3.63 3.32
Mean error runs of length 2 0.47 1.13 0.80
Mean error runs of length 3 0.53 0.54 0.48
Mean error runs of length 4 0.32 0.32 0.20
Mean error runs of length 5 0.42 0.21 0.20

Discussion

One of the more interesting results of the beta-model analyses just present-
ed is that the estimates of the nonreward parameter, 8., are uniformly larger
than the corresponding estimates of the reward parameter, 8. The alpha-
model analyses, on the other hand, lead to the opposite conclusion about
the relative effects of reward and nonreward for the first and third experi-
ments described. Therefore, it is evident that one’s inferences about the
relative effectiveness of reward and nonreward (or avoidance and escape) are
‘““model-bound.” If such inferences could be made by using a nonparametric
technique which makes no assumptions other than those embodied in a large
class of models (including the alpha and beta models), then evidence in sup-
port of one model or the other would be obtained. Unfortunately, we have
not found a satisfactory technique for this purpose; we must rely on other
evidence if we wish to decide which model is the more satisfactory.

We compared the alpha and beta models by analyzing in detail two ex-
periments. The alpha model is in very close agreement with the avoidance-
learning data on all properties examined; the beta-model figures are likewise
very close to the data, except for the variance of total shocks. Thus, the
alpha model has a slight edge on the beta model for these data. On the
other hand, the beta model gives a decidedly more satisfactory description of
the data on retraining after overlearning. With this experiment, the alpha
model appears to be in serious trouble, particularly in predicting the variance
of the total number of errors.

The variance of total errors is a very useful statistic for discriminating
between the two models. As was pointed out to us by S. Sternberg, this is
a consequence of the different roles played by reward and nonreward in the
two analyses. When reward is less effective than nonreward, the process has
‘“negative feedback ’’: if an animal receives a large number of rewards dur-
ing the early trials, his probability of error remains high and so he will make
few rewarded responses during the later trials. Similarly, if he makes many
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errors early, his probability of error decreases to a low value, and so few
errors are made later. This effect tends to equalize the total errors made
by different animals. On the other hand, when reward is more effective
than nonreward, ‘‘positive feedback ’’ exists and so one would expect a large
variance of the total number of errors.

If reward and nonreward are assumed to have equal effects, each model
predicts a specified variance of total errors; these predictions can serve as
baselines in pursuing the argument given in the previous paragraph. For-
mulas for the mean and variance of total errors for the equal-alpha model
are well known (see Chapter 10). For the relearning period of the overlearn-
ing experiment, we observed a mean of 24.7. Equating this to the expected
value and taking p; = 1, we estimate « to be 0.96. The variance is then
computed to be 9.9. For the equal-beta model,* using the observed mean
and p; = 0.996, the value previously obtained for the beta model, we estimate
B to be 1.25. This leads to a computed variance of 4.5. Both of these com-
puted variances are consistent with our arguments about how the relative
effects of reward and nonreward alter the variance. The unequal-alpha mod-
el with reward more effective led to a variance of 26.6, compared with the
9.9 figure for the equal-alpha model. The unequal-beta model with nonreward
more effective gave a variance of 3.3, compared with the 4.5 value for the
equal-beta model. (All computations fixed the mean total errors at the ob-
served value of 24.7.)

A desirable property of any learning model is that the event parameters
should be independent of experimental variables such as the number of trials
of previous training. This property has been termed ‘‘event invariance’’ or
‘‘parameter invariance”’ ({1], Chapter 14). As noted in Chapter 14, the alpha-
model analyses of the two learning experiments described above do not exhibit
this property. Likewise, the beta-model analyses of these same data fail to sup-
port the hypothesis of parameter invariance in that model. The data on re-
learning after overtraining lead to a nonreward parameter that is less effective
than that obtained from the data on relearning after moderate training.

Additional evidence for lack of parameter invariance in the beta model is
found by examining the data from the first period of the overlearning ex-
periment. Proceeding backwards from the 0.95 point on the learning curve
(trial 31), we estimated B3; to be 1.20. But, when we moved backwards from
the end of the first period, using the estimate p, = 0.996 obtained from the

+ Major simplifications in the beta model result from the special assumption 8;=8:=35,
which implies that reward and nonreward have equal effects, The probability of an
error on trial n» has the fixed value

pn=pf[p1 + (1 — ppn-1],
where 8 > 1. Defining a random variable x, that has the value 1 when an error occurs
on trial = and the value 0 otherwise, we obtain for the total number of errors u;=2n
(all summations in this note are from 1 to =), The expected value is
E(uy) = 2 E(zn) = Xpa = Z{p/[p1 + (1 — p)B=-1} .
If we replace the sum with an integral from 1 to o, we obtain the approximation
E(uy) = — log (1 — py)/log 8. The variance is
var (w1) = 3 var (#x) = 3 pa(l — pn) = Z{pul = p)B*~Y[p1 + (1 — p1)8*-112} .
The integral approximation is var (u;) = piflog 8.
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beginning of the second period, we obtained 3, = 1.015. Thus, reward seems
to have much less effect during the late trials of overlearning than it does
anywhere else in the data.

In summary, we have uncovered two pieces of evidence against the beta
model from the three experiments analyzed: (a) underestimates of the vari-
ance of total errors, and (b) lack of parameter invariance. There are two
reasons, however, why we feel that these apparent weaknesses of the model
need not be taken too seriously. The first has to do with the experiments
themselves. It is reported in Chapter 14 that the data from the two T-
maze experiments, both of which had three trials a day, exhibited a very
significant daily recovery effect, at least for the last 48 trials. The extent
to which this phenomenon affects the parameter estimates and the various
measures of goodness-of-fit is not known, but we would not be surprised if
it were quite serious. The second reason for tempering the evidence against
the beta model is our implicit assumption of a single unique value of the
initial probability for each period of each experiment. Unlike the alpha mod-
el, the beta model is extremely sensitive to p; in the neighborhood of 1 or
0. Therefore, a distribution of p, with very small spread might have a
strong effect on subsequent analyses. Furthermore, we know that the model
implies a non-zero-variance distribution of p’s at the end of a training period,
and therefore at the beginning of the following period. One might hope,
therefore, that the apparent evidence against the beta model would disappear
when both the experiments and the analyses are refined.

Alternatively, however, the more refined experiments and analyses may
continue to exhibit a lack of parameter invariance. In particular, the
tail of the learning curve in an overtraining experiment may be considerably
flatter than predicted by the beta model with parameters estimated from
other regions. (It should be noted that with parameter values of the order
of 1.1, the beta model would predict an initial probability of 0.999,999 at the
beginning of period 2 of the relearning experiment.) If this is the case,
then it will be necessary to devise models that exhibit more reduction in the
effect of experience as the probability of choice approaches 0 or 1.

This study represents the first detailed inquiry into the adequacy of the
beta model. More such studies are needed before a final evaluation can be
made. To facilitate the analyses, further mathematical work on model prop-
erties and related estimation problems is needed.

Table of L(p, 8)
The following five-page table of the function

p k
_o[s25]
Lip,3=3 1—p]
Pl 24
j=o| 1 —p
was prepared by the Computer Center, University of Pennsylvania. We are
indebted to Dr. Saul Gorn, Director of the Center, and to Mr. Peter Ingerman,

who wrote the program.
The references to this chapter follow the table.
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N 1.000} 1.010] 1.020| 1.030 1.032’ 1.034 1.036‘ 1.038‘ 1.040\ 1.042 1.044' 1.046’ 1.048 | 1.050

P
19995 1999.000 260.453 162.129 121.295 115.738 110.734 106.199 102.070 98.291 94.819 91.616 88.651 85.898 83.333
'9994 |1665.667 244.650 153.709 115.520 110.301 105.597 101.331 97.442 93.882 90.607 87.584 84.785 82.183 79.759
'9993 [1427.571 231.534 146.673 110.680 105.744 101.290 97.247 93.559 90.180 87.071 84.199 81.537 79.062 76.755
9992 (1249000 220.370 140.647 106.523 101.827 97.587 93.735 90.220 86.996 84.028 81.285 78.741 76.375 74.168
‘9991 (1110.111 210.685 135.387 102.886 98.400 94.345 90.660 87.294 84.206 81.361 78.730 76.290 74.019 71.899
9990 | 999.000 202.158 130.730 99.658 95.356 91.466 87.928 84.694 81.726 78.990 76.459 74.109 71.922 69.880
‘9989 | 908.091 194.560 126.558 96.759 92.623 88.879 85.473 82.358 79.496 76.858 74.416 72.148 70.036 68.064
‘9988 | 832.333 187.725 122.786 94.133 90.145 86.534 83.246 80.237 77.473 74.923 72.561 70.368 68.324 66.414
‘9037 | 768.231 181.525 119.348 91.733 87.881 84.390 81.210 78.299 75.623 73.152 70.864 68.738 66.756 64.904
‘9086 | 713.286 175.862 116.193 89.527 85.799 82.418 79.336 76.514 73.919 71.522 69.302 67.237 65.312 63.513
9985 | 665.667 170.660 113.281 87.487 83.872 80.593 77.603 74.863 72.342 70.013 67.854 65.847 63.975 62.224
‘9984 | 624.000 165.855 110.581 85.591 82.082 78.896 75.990 73.327 70.874 68.609 66.507 64.553 62.730 61.024
‘9983 | 587.235 161.397 108.065 83.821 80.410 77.312 74.484 71.891 69.503 67.296 65.248 63.343 61.565 59.901
‘9982 | 554.556 157.245 105.712 82.163 78.843 75.827 73.072 70.545 68.217 66.065 64.067 62.208 60.472 58.848
‘9981 | 525.316 153.363 103.503 80.605 77.370 74.430 71.744 69.279 67.007 64.906 62.955 61.139 59.443 57.856
9980 | 499.000 149.723 101.424 79.135 75.980 73.112 70.490 68.083 65.864 63.811 61.905 60.130 58.471 56.918
‘9975 | 399.000 134.381 92.572 72.845 70.030 67.465 65.117 62.957 60.963 59.114 57.396 55.793 54.295 52.890
‘9970 | 332.333 122.469 85.585 67.845 65.294 62.967 60.832 58.866 57.047 55.360 53.790 52.323 50.950 49.662
‘9065 | 284.714 112.856 79.864 63.722 61.386 59.251 57.290 55.481 53.806 52.250 50.800 49.445 48.175 46.983
‘9960 | 249.000 104.879 75.054 60.234 58.077 56.102 54.286 52.609 51.054 49.608 48.259 46.997 45.814 44.701
9955 | 221.222 98.120 70.929 57.225 55.220 53.381 51.689 50.123 48.671 47.319 46.057 44.875 43.766 42.722
‘9050 | 199.000 92.297 67.335 54.590 52.716 50.995 49.409 47.941 46.578 45.307 44.120 43.007 41.962 40.978
‘9940 | 165.667 82.728 61.341 50.163 48.504 46.978 45.568 44.261 43.044 41.909 40.846 39.849 38.911 38.027
9930 | 141.857 75.142 56.502 46.557 45.069 43.697 42.428 41.249 40.150 39.123 38.160 37.256 36.404 35.600
9920 |124.000 68.949 52.486 43.539 42.191 40.946 39.792 38.718 37.716 36.778 35.898 35.070 34.289 33.551
9910 | 110.111 63.775 49.082 40.963 39.731 38.592 37.534 36.549 35.628 34.765 33.954 33.191 32.470 31.788
9900 | 99.000 59.377 46.150 38.728 37.505 36.546 35.570 34.660 33.809 33.010 32.258 31.550 30.881 30.247
9850 | 65.667 44.427 35.871 30.766 29.967 29.222 28.526 27.873 27.259 26.680 26.133 25.616 25.125 24.658
9800 | 49.000 35.643 29.556 25.755 25.149 24.581 24.048 23.546 23.072 22.624 22.198 21.795 21.410 21.044
9750 | 39.000 29.797 25.211 22.242 21.761 21.310 20.884 20.481 20.100 19.738 19.394 19.066 18.754 18.455
9700 | 32.333 25.603 22.011 19.614 19.221 18.851 18.500 18.168 17.853 17.553 17.267 16.994 16.733 16.483
9650 | 27.571 22.438 19.542 17.561 17.232 16.922 16.627 16.348 16.081 15.827 15.585 15.353 15.131 14.918
‘9600 | 24.000 19.958 17.572 15.904 15.626 15.361 15.109 14.870 14.641 14.423 14.214 14.014 13.822 13.638
9550 | 21.222 17.961 15.961 14.536 14.296 14.067 13.850 13.642 13.444 13.254 13.072 12.897 12.729 12.568
9500 | 19.000 16.317 14.616 13.384 13.175 12.975 12.785 12.603 12.429 12.262 12.102 11.947 11.799 11.657

B

1.052| 1.054 | 1.056| 1.058 | 1.060 | 1.062 | 1.064 | 1.066 | 1.068| 1.070| 1.075| 1.080| 1.085| 1.090

P
9995 | 80.938 78.696 76.591 74.612 72 746 70.984 69.318 67.739 66.241 64.817 61.547 58.635 56.023 53.667
.9994 | 77.493 75.371 73.378 71.503 69.735 68.065 66.484 64.986 63.564 62.212 59.106 56.337 53.852 51.609
9993 | 74.598 72.576 70.677 68.889 67.203 65.609 64.101 62.671 61.312 60.021 57.051 54.403 52.025 d49.876
.9992 | 72.104 70.168 68.349 66.637 65.020 63.493 62.046 60.674 59.371 58.131 55.279 52.734 50.447 48.380
.9991 | 69.916 68.056 66.307 64.660 63.105 61.635 60.242 58.921 57.666 56.471 53.722 51.268 49.062 47.066
.9990 | 67.969 66.176 64.489 62.900 61.400 9.981 58.636 57.360 56.147 54.993 52.336 49.962 47.827 45.805
9989 | 66.217 64.484 62.853 61.316 59.865 58.491 57.189 55.954 54.779 53.661 51.086 48.785 46.713 44.839
.9988 | 64.626 62.947 61.367 59.877 58.469 57.137 55.875 54.676 53.536 52.450 49.950 47.714 45.701 43.878
9987 | 63.169 61.539 60.005 58.558 57.191 55.897 54.670 53.505 52.396 51.341 48.908 46.732 44.772 42.997
.9986 | 61.826 60.242 58.750 57.343 56.013 54.754 53.559 52.425 51.346 50.317 47.948 45.826 43.915 42.183
9985 | 60.582 59.040 57.587 56.217 54,921 53.694 52.520 51.423 50.371 49.368 47.056 44.986 43.120 41.429
.9984 | 59.424 57,920 56.504 55.167 53.903 52.706 51.570 50.490 49.463 48.484 46.226 44.203 42.379 40.725
.9983 | 58.341 56.873 55.491 54.186 52.951 51.782 50.672 49.617 48.613 47.656 45.448 43.469 41.685 40.066
9982 | 57.323 55.890 54.539 53.264 52.057 50.914 49.828 48.796 47.814 46.878 44.717 42.780 41.032 39.446
.9981 | 56.366 54.964 53.643 52.395 51.215 50.096 49.033 48.023 47.062 46.145 44.028 42.130 40.417 38.862
.9980 | 55.461 54.089 52.796 51.574 50.418 49.322 48.282 47.292 46.350 45.451 43.377 41.515 39.835 38.309
.9975 | 51.569 50.326 49.152 48.042 46.991 45.994 45.046 44.144 43.284 42.464 40.568 38.864 37.324* 35.924
.9970 | 48.450 47.308 46.228 45.207 44.239 43.320 42.446 41.613 40.819 40.061 38.307 36.729 35.300 34.000
.9965 | 45.859 44.800 43.798 42.850 41.950 41.095 40.281 39.506 38.766 38.059 36.422 34.948 33.611 32.393
9960 | 43.653 42.663 41.727 40.839 39.997 39.196 38.434 37.707 37.013 36.349 34.811 33.424 32.166 31.018
.9955 | 41.737 40.807 39.927 39.092 38.299 37.545 36.827 36.141 35.486 34.860 33.408 32.096 30.905 29.818
.9950 | 40.050 39.172 38.341 37.552 36.802 36.088 35.408 34.759 34.139 33.545 32.167 30.922 29.790 28.756
9940 | 37.191 36.400 35.650 34.938 34.261 33.615 32.999 32.411 31.848 31.310 30.057 28.923 27.891 26.946
.9930 | 34.839 34,118 33.434 32.784 32.165 31.574 31.011 30.472 29.956 29.462 28.311 27.268 26.317 25.445
.9920 | 32.853 32.190 31.561 30.962 30.391 29.847 29.326 28.829 28.352 27.895 26.820 25.862 24.979 24.169
.9910 | 31.142 30.529 29.946 29.391 28.861 28.355 27.872 27.409 26.965 26.540 25.547 24.644 23.819 23.062
.9900 | 29.646 29.075 28.532 28.015 27.521 27.048 26.597 26.164 25.749 25.351 24.421 23.574 22.799 22.087
.9850 | 24.214 23.791 23.386 23.000 22.630 22.276 21.936 21.610 21.296 20.994 20.286 19.638 19.043 18.493
.9800 | 20.695 20.361 20.041 19.735 19.441 19.159 18.888 18.626 18.375 18.133 17.563 17.039 16.556 16.108
.9750 | 18.170 17.896 17.634 17.382 17.140 16.907 16.683 16.466 16.258 16.056 15.582 15.144 14.739 14.362
9700 | 16.243 16.014 15.793 15.581 15.376 15.179 14.989 14.806 14.629 14.458 14.053 13.679 13.331 13.008
.9650 | 14.713 14.516 14.327 14.145 13.969 13.800 13.636 13.478 13.325 13.176 12.826 12.501 12.198 11.915
9600 | 13.460 13.290 13.125 12.967 12.814 12.666 12.523 12.384 12.250 12.120 11.812 11.526 11.259 11.009
.9550 | 12.412 12.262 12.118 11:978 11.843 11.713 11.586 11.464 11.345 11.230 10.957 10.702 10.465 10.242
9500 | 11.519 11.386 11.258 11.134 11.014 10.898 10.785 10.676 10.570 10.467 10.223 9.995 6.781 9.581

* Interpolated value
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B
\\\\\\\\\\\ 1.095 ’ 1.100 ) 1.105 } 1.110 ) 1.115 ‘ 1.120 | 1.130 | 1.140 l 1.150 | 1.160 | 1.170 ’ 1.180 ‘ 1.190\ 1.200
P
9995 | 51.528 49.578 47.791 46.149 44.632 43.228 40.707 38.507 36.570 34.849 33.309 31.923 30.668 29.526
9994 | 49.572 47.713 46.010 44.442 42.995 41.654 39.245 37.142 35.280 33.641 32.167 30.839 29.636 28.540
19993 | 47.924 46.142 44.508 43.004 41.615 40.327 38.013 35.992 34.208 32.623 31.203 29.924 28.764 27.708
19992 | 46.502 44.786 43.212 41.763 40.424 39.182 36.949 34.997 33.275 31.743 30.371 29.133 28.011 26.989
(9991 | 45.252 43.594 42.073 40.671 39.376 38.174 36.013 34.123 32.454 30.969 29.638 28.437 27.349 26.356
19990 | 44.137 42.531 41.057 39.698 38.441 37.275 35.178 33.342 31.721 30.278 28.984 27.816 26.757 25.791
19980 | 43.132 41.573 40.140 33.820 37.598 36.465 34.425 32.638 31.060 29.654 28.303 27.255 26.223 25.281
19988 | 42.218 40.700 39.306 38.021 36.831 35.727 33.738 31.997 30.457 29.086 27.855 26.744 25.736 24.816
9987 | 41.380 39.900 38.541 37.287 36.127 35.049 33.109 31.408 29.904 28.564 27.361 26.275 25.280 24.389
9986 | 40.606 39.162 37.839 36.610 35.477 34.424 32.527 30.865 29.394 28.082 26.905 25.841 24.876 23.9%4
.9985 | 39.887 38.476 37.179 35.982 34.873 33.843 31.987 30.360 28.919 27.634 26.481 25.430 24.492 23.628
‘9984 | 39.217 37.837 36.567 35.305 34.310 33.301 31.483 29.883 28.476 27.216 26.085 25.062 24.133 23.285
19983 | 38.500 37.238 35.994 34.846 33.782 32.794 31.011 29.446 28.061 26.825 25.714 24.710 23.797 22.964
19982 | 38.000 36.675 35.455 34.329 33.286 32.316 30.567 29.031 27.670 26.456 25.364 24.378 23.481 22.662
19981 | 37.443 36.143 34.047 33.842 32.818 31.865 30.147 28.638 27.301 26.108 25.035 24.064 23.182 22.376
9980 | 36.917 35.641 34.466 33.381 32.374 31.439 29.750 28.267 26.952 25.778 24.722 23.767 22.899 22.105
9975 | 34.644 33.470 32.388 31.387 30.459 29.595 28.034 26.660 25.441 24.351 23.370 22.482 21.673 20.934
9970 | 32.810 31.718 30.710 29.777 28.911 28.104 26.645 25.360 24.218 23.196 22.275 21.440 20.680 19.984
.9965 | 31.278 30.253 29.307 28.431 27.616 26.857 25.482 24.270 23.192 22.227 21.356 20.566 19.846 19.186
19960 | 20.966 28.998 28.104 27.276 26.505 25.787 24.484 23.335 22.311 21.394 20.565 19.814 19128 18.500
.9955 | 28.821 27.903 27.054 26.267 25.535 24.851 23.612 22.516 21.540 20.664 19.873 19.155 18.499 17.898
9950 | 27.807 26.933 26.124 25.373 24.674 24.022 22.837 21.790 20.856 20.017 19.259 18.570 17.940 17°363
9940 | 26.078 25.278 24.536 23.847 23.204 22.604 21.513 20.547 19.683 18.205 18.205 17.566 16.982 16.445
9930 | 24.644 23.903 23.216 22.578 21.982 21.424 20.410 19.511 18.706 17.981 17.325 16.728 16.181 15.678
9920 | 23.422 22.732 22.092 21.496 20.939 20.418 19.469 18.625 17.870 17.189 16.572 16.010 15.494 15.020
19910 | 22.363 21.716 21.115 20.556 20.032 19.542 18.649 17.854 17.142 16.499 15.915 15.383 14.895 14.446
19900 | 21.430 20.821 20.255 19.727 19.233 18.770 17.925 17.173 16.498 15.888 15.334 14.828 14.364 13.937
9850 | 17.983 17.509 17.067 16.654¢ 16.266 15.901 15.232 14.634 14.095 13.605 13.159 12.751 12.375 12.028
(9800 | 15.691 15.303 14.940 14.599 14.278 13.976 13.421 12.922 12.471 12.060 11.684 11.339 11.021 10.726
9750 | 14.011 13.683 13.375 13.085 12.812 12.555 12.080 11.652 11.264 10.909 10.584 10.285 10.009 9.752
9700 | 12.705 12.422 12.155 11.904 11.668 11.443 11.030 10.655 10.315 10.003 9.717 9.453 9.209  8.982
9650 | 11.651 11.402 11.168 10.947 10.739 10.541 10.175 9.843 9.540 9.263 9.008 8.772 8.553  8.349
19600 | 10.775 10.554 10.347 10.150 9.964 9.788 9.460 9.163 8.891 8.642 8.411 8.198 8.000 7.816
9550 | 10.032 9.835 9.648 9.472 9.305 9.146 8.851 8.582 8.336 8.109 7.900 7.706 7.526 7.357
9500 | 9.392 9.214 9.045 8.886 8.734 8.5%0 8.322 8.077 7.853 7.646 7.455 7.277 7.112 6.957
8
1.210 | 1.220 | 1.230 | 1.240 | 1.250 | 1.260 | 1.270 | 1.280 | 1.290 [ 1.300 | 1.320 | 1.340 | 1.360 | 1.380
D
9995 | 28.481 27.523 26.639 25.822 25.064 24.358 23.700 23.084 22.507 21.965 20.972 20.086 19.290 18.569
9994 | 27.538 26.618 25.769 24.985 24.256 23.578 22.946 22.354 21.798 21.277 20.322 19.469 18.702 18.008
9993 | 26.742 25.854 25.036 24.278 23.575 22.920 22.309 21.737 21.200 20.696 19.773 18.947 18.205 17.534
9992 | 26.054 25.19¢ 24.401 23.667 22.985 22.351 21.758 21.203 20.683 20.194 19.208 18.497 17.776 17.124
9991 | 25.448 24.613 23.842 23.129 22.466 21.849 21.273 20.733 20.227 19.751 18.879 18.099 17.398 16.762
9990 | 24.907 24.094 23.343 22.648 22.003 21.402 20.840 20.314 19.820 19.356 18.505 17.744 17.059 16.439
9989 | 24.418 23.625 22.803 22.214 21.584 20.997 20.448 19.935 19.452 18.999 18.167 17.424 16.754 16.148
.9988 | 23.973 23.198 22.482 21.819 21.203 20.628 20.092 19.589 19.117 18.673 17.860 17.131 16.475 15.881
9987 | 23.564 22.806 22.105 21.456 20.852 20.200 19.764 19.272 18.809 18.374 17.577 16.863 16.220 15.637
.9986 | 23.186 22.443 21.756 21.120 20.528 19.977 19.461 18.978 18.524 18.098 17.315 16.614 15.983 15.411
9985 | 22.835 22.106 21.432 20.808 19.227 19.685 19.179 18.705 18.260 17.840 17.072 16.383 15.763 15.200
9984 | 22.507 21.791 21.129 20.516 19.945 19.413 18.916 18.450 18.012 17.600 16.844 16.167 15.557 15.004
(9983 | 22.200 21.49 20.845 20.242 19.681 19.158 18.669 18.211 17.780 17.375 16.631 15.965 15.364 14.819
(9982 | 21.910 21.218 20.578 19.985 19.433 18.918 18.437 17.985 17.562 17.162 16.430 15.774 15.182 14.646
9981 | 21.636 20,955 20.326 19.741 19.198 18.691 18.217 17.773 17.355 16.962 16.240 15.594 15.010 14.481
(9980 | 21.377 20.707 20.086 19.511 18.976 18.476 18.009 17.571 17.159 16.772 16.060 15.423 14.847 14.326
9975 | 20.255 19.629 19.050 18.512 18.012 17.544 17.107 16.697 16.311 15.948 15.280 14.681 14.141 13.651
9970 | 19.344 18.755 18.208 17.701 17.229 16.787 16.374 15.986 15.621 15.278 14.646 14.079 13.567 13.101
.9965 | 18.580 18.020 17.501 17.020 16.571 16.151 15.758 15.389 15.042 14.714 14.112 13.572 13.083 12.639
9960 | 17.922 17.388 16.893 16.433 16.004 15.603 15.227 14.874 14.542 14.228 13.652 13.134 12.666 12.240
19955 | 17.344 16.833 16.359 15.918 15.506 15.122 14.761 14.422 14.103 13.802 13.248 12.750 12.299 11.889
9950 | 16.831 16.340 15.884 15.460 15.064 14.693 14.346 14.020 13.712 13.422 12.888 12.408 11.973 11.577
.9940 | 15.951 15.493 15.068 14.673 14.303 13.958 13.633 13.328 13.041 12.769 12.269 11.819 11.411 11.039
9930 | 15.214 14.785 14.386 14.014 13.667 13.341 13.036 12.749 12.478 12.222 11.750 11.324 10.939 10.587
9920 | 14.583 14.177 13.800 13.449 13.120 12.812 12.523 12.251 11.994 11.751 11.303 10.899 10.533 10.199
9910 | 14.031 13.646 13.288 12.954 12.642 12.349 12.074 11.815 11.570 11.339 10.912 10.527 10.177 9.858
9900 | 13.542 13.175 12.834 12.516 12.218 11.938 11.676 11.428 11.194 10.973 10.565 10.196 9.861  9.555
9850 | 11.706 11.406 11.127 10.865 10.620 10.3%0 10.173 9.968 9.775 9.591 9.252 8.944 8.664 8.408
9800 | 10.453 10.197 9.959 9.735 9.525 9.328 9.141 8.965 8.798 8.640 8.346 8.080 7.837 7.6l4
9750 | 9.513 9.291 9.082 8.88 8.702 8.528 8.364 8.200 8.061 7.922 7.662 7.426 7.210 7.012
9700 | 8.770 8.572 8.386 8.211 8.047 7.892 7.745 7.606 7.474 7.349 7.116 6.903 6.709 6.530
9650 | 8.159 7.980 7.813 7.656 7.507 7.367 7.235 7.109 6.989 6.875 6.664 6.471 6.293 6.130
9600 | 7.643 7.481 7.329 7.186 7.051 6.923 6.802 6.687 6.578 6.474 6.280 6.103 5.940 5.790
9550 | 7.200 7.052 6.913 6.781 6.657 6.540 6.420 6.323 6.222 6.127 5.948 5784 5634 5.49
9500 | 6.812 6.676 6.548 6.427 6.313 6.204 6.101 6.004 5910 5.822 5656 5504 5364 5.235
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Bush, R. R., and Mosteller, F. Stochastic models for learming. New York: Wi-

In R. M. Thrall, C. H. Coombs, and R. L. Davis (eds.), Dectsion
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Estes, W. K. Toward a statistical theory of learning. Psychol. Rev., 1950, 57,
Luce, R. D. Individual choice behavior: a theoretical analysis. New York: Wi-

acquisition in

Yale University

Psychol. Monogr., 1953, 67, No. 4 (Whole No. 354).

'ub
g o
- T
8 3
Q
S22
©
3 .
. a8
Q ) > «© R
z R «: En
o . o] =t §
=] a 3 s S
B 2 v & 3
[~ E 4 . ]
& I AN
~2 F3 Sk
2 3 g 8.3
- = = -5
B N £ s
. §5 B4
% 3 gs s
° = £ ]
e 2 X R
§8 . =% 4 ¢
& : oo .o
. 2 ® - . O M IO
2 a9 . @ o0 =]
[Te} b NS n g s
CH T A S ESY 4
L2 28 83 = .8 E g8
»3 28R4 353538 &L
2 C /MWL A2 s
S ®m v o~
106°'¢ S8IV'E €16°€ 6SL°€ ¥86°€ O9II'vy S92°% €ev'v L29°V ZIL'Vy €08'%v 106'% ¥00'S 9IS 005S6°
600°€ 9SS°€ 02L.°€ LI6°€ LST'VP L6V 9SVV 989y  EV8FV  PE6'V 2€0°S  9ET'S  L¥e'S  L9E'S 08S6°
0S1°€ OIL'E 983°€ 960'FV 2SE'F Q0S¥ TV G98'FY I80'G 981'S 162°S €OV'S €25°S  IS9°S 0096°
892°€ I88°€ S0V 00E'Vv GLSF  LELV 026'F €1'S  89€°S  GLV'S  88§'S  OIL'S  O¥8'S 086G 0896°
8ZV'S €0'F 962’F 68S'¥ 9€8°'F 110§ 0Iz'S 9€¥'S L69°S €I8'S lg6'S 0L0°9 <2IZ°9 S9E'9 0026°
619'€ 68€°F 6SS'VF €28V 8FI'S OVE'S LSS°S  S08°S  2Z60'9 022°9 LSE'9  €0S'9  099°9 6289 0S26°
€S8’ CHOv  ¥88'F 9.6 ¥ES'S  LVL'G  886°G  ¥I2°9 W8G9 LTL'9 0889 EVO'L 6l¢L 60V L 0086°
IST°V  l€0°S  80£°S 9€9°S OPO'9 0829 €959 998'9 0€3L €6E°L L9S°L ¥SLL  SS6°L  TLI'B 0586°
88S'F 665G €I16'S €62°9 €9.°9 €W0°L €9¢°L 0ELL 6SI'8  ISE'8  LSS'8  B8LL'B  LI0°6  SLT6 0066°
00L'%F 9¥LS 1209 S99 €S6°9  ¥¥ZL 9.6°L 8S6°L €0V'8 £09'8 LI8'8 806 L6C°6 99576 0166°
9z8'% 116'S 6¥2'9 859°9 991°L 69v°L ¥I8'L €IZ'8 89’8 /88'8 OII'6 IS€'6 1196 €68°6 0266°
06'F 8609 ISP'9 889 80F.L S3.°L 9808 €058 166’8 016 ¥¥6 L2696 0,66 99201 0€66°
GE1'S  SIE'9 ¥89'9 ZEI"L 689°L 1308 20¥'8 Iv8'8 ¥SE°6 ¥8S'6 <CER'6  660°01 /L8EOL 669 01 0v66°
I1€€°G €269 2969 ¥EV'.L 220°8 WlE'8 9LL°8 I¥Z26 98L°6 0L0°OI €62°0L LLSOT €88°01 SGIZ'II 0566
SVP'S  22L°9 g2l'L  609°L SIZ8  8.5°8 ¥66°'8 PLV'6  9£0°0T 682°0T 19S°0T ¥S8'0I TLL'TI GIS'IT G566
2.5°S 688°9 208°. S08°.L 2E€¥'8 L0888 LE2'6  ¥EL'6  LZIEOT 6501 19801 SIU'TI ¥6¥ IT IS8 1I 0966
91.'S 80°L L0SL 8208 8,98 8906 ¥IS6 T1€0°0T Lg9°01T 606°01 €02°TT 6IS'IT ¢98°11 €€g ¢l G966
€88°G 862°L E€PLL 9828 £96'8 6966 GEB'6  WLEOL L00'IT 26211 86S'I1 6C6°11 882'¢l LL9°CI 0,66
080’9 ASS°L €20°8 166'8 O00E'6 92.°6 S12°0T I8L°O1 9pb'IT GPL'IT 890°CI 9I¥'C¢1 €6L°¢1 €0Z°€1 GL66°
22¢°9 9/8°L /928 996'8 ¥IL'6 SOUOT 189°01 1I82°'TT G86'IT €0£°21 G¥9'Cl V¥IO'ET SIV'ET 0S8°€l 0866°
LLE'9 6¥6°L 9VP'8 2S0°6 0186 992°0T 68L°01 96€'IT 601°21 T1€¥'gl 8LL°21 CST'ET 8SG'E1 666 €1 1866°
9gy'9 LZ20°8 62G6°8 E€¥VI'6 0166 TLEOI <206°01 LIS'IT oO¥2'21 L9G°C1 816°¢l 86C°€T 60L°€ET LSI'¥I 7866°
86F'9 R80T'8 LI9'8 626 LI0°OT G8P'O1 220°TI1 9¥9°'1I1 64€°31 OIL°21 990°€T ¢SP'E€1 698°€T €€ ¥I £866°
¥95°'9 S6l'8 I1.°8 I¥e'6 OST°OT S09°01 6FPI'TIT 28L°T1 926°21 298°¢l ¥22°€1 SGI9'€T 6£0°¥1 005 ¥I ¥866°
$£9'9 /828 1188 0S¥'6 0620l CELOT G82'I1T LZ6'T1 €89°C1 ¥20°'€l T6E'ET 68L°€l 02Z'¥1 889'¥1 G866°
60L°9 988 LI6'8 995°6 6/£°01 898°0T OEV IT €80°21 1S8'2l L6I'El 1T1LG'E€1 GL6'€T €IV ¥ 068 VI 9866
68L°9 T6F'8 280°6 169°6 LISOT ¥IO'TT 98S'IT 0SZ'2l T€O'ET ¥8E°ET ¥OL°E€T SLU¥L 129'%1 9Q0I°SI 1866°
9/8°9 2098 9S1°6 928°6 999°0T ELU'IT ¥SL'TIT OE¥'21 922°€1 G8S'E€1 €L6°ET 268 %I 9¥v8 %1 1¥e'Gl 8866°
1269 2TEL'8 062°6 €L6'6 628°01 GvE'IT 8E6°IT 929'Ccl SEV'ET SGOB'ET 00T ¥I L29'¥PI 160°ST 96G°SI 6866°
GL0°L 6988 BEF'6  VET'OT L0O'TT ¥ES'TT 6€1°C21 2¥8°C1 O0L9°€T SHO'PT 6¥F P1  G8R'PT 6SE°ST GL8'SI 0666
681°Z 0206 109°6 2IE Ol ¥%OQ IT <CvL'IT 19¢°2T 080°CEl 8Z6'EL TIE¥I ¥#2L°¥1 TLI'SGT 969°GI 8191 1666°
LI1€°L 681'6 ¥BL'6 T11S°01 Sgv 1T 92611 609°21 9%€'€l SGIZ'¥I 809°%¥1 ZE0°'ST 16%'ST 886°Gl O0£S 91 666"
gov", 1886 1666  LEL°O1 GL9°T11 1¥2°Cl 268°C1 6%V9°€l 2¥S'¥I O¥6'FI ¢8E'GT €S8°GT S9EL°91 ¢€26°91 £666°
089°.L T09°'6 0£Z°01 86601 ¥96° 11T L¥S 21 LIZ'ET 866°€l 6I6°F1 9£€°GT 98L°GT €L2°91 108°91T LLE'LI ¥666°
628°L ¥98°6 £IS°0T LOE'IT 90€°CT 606°C1 €09°€l ZI¥¥T 99€°SI 86L°ST ¥9¢°91 692°91 LIE LT SI6°L1 6666
| d
00S°2 l 000°¢ \ 006° 1 ‘ 008°'T |004°T l 0991 l 009°1 l 0SS'1 ‘ 00S'T |O8F'T |O9V'T | OWF'T | OCV'I ‘ 00%° 1 N

398



