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The general stochastic learning models that have been previously studied 
[I] postulate a probability distribution 

over the set of r alternatives available to an organism. This vector gives the 
probability that each alternative will be chosen on trial n. A transition opera- 
tor T is postulated such that ( i ) T does not depend upon n (independence 
of path); (ii) T depends upon the choice made on trial n and on the outcome; 
and (iii) pn+, = Tpn. 

For the most part linear (matrix) operators have been studied-partly be- 
cause their mathematical properties are comparatively simple, partly because 
of Estes' stimulus-sampling rationale [3], and partly because the combining-of- 
classes condition ([I], [ Z j )  leads to a particular type of linear operator. None- 
theless, it is still an open question whether linearity is a tenable assumption 
or whether one of the possible nonlinear operators will be better able to de- 
scribe data. The problem, of course, is how to select among all the possible 
nonlinear operators. 

The purpose of this paper is to study some properties of a nonlinear model, 
called the beta model, and to apply it to three published experiments 
(Chapter 14 and [6]). The linear model, called the alpha model, and the beta 
model can both be arrived at from the same general considerations. For 
this reason, comparisons between these two models are made. 

Response-Strength Models 

Some learning theorists ([4], [7]) consider response frequencies and their 
underlying probabilities to be the manifestation in behavior of some latent 
construct called response strength. Earlier stochastic learning models have 
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been criticized for their failure to postulate the source of the response prob- 
abilities with which they deal. Recently, the response-strength notion has 
been formalized 151; we review it briefly here and then investigate some of 
its consequences. 

Suppose that i is an alternative in the set S, which, in turn, is a subset 
of the finite set T. Let Ps (i) denote the probability that i is chosen when 
the choice is confined to S and Pp(ilS), the probability that i is chosen when 
the choice is confined to T, conditional on its being in S. If PI~,l)(E') f 0 or 
1, where i and j are in T, then we postulate 

This axiom leads to the conclusion that there exists a ratio scale, v, over 
the alternatives with the properties 

and 

( 2  1 v(i) > 0, for all i E T . 
This v-scale, which in psychophysical problems appears to be closely related 
to scales that have been studied earlier, is presumed to be the formal coun- 
terpart of response strength. For many purposes, this scale may be more 
useful than the choice probabilities themselves. 

In most learning experiments the set of alternatives is fixed, and so one 
cannot make a direct check of the axiom that leads to the v-scale; however, 
since this axiom refers to an organism, not to an experiment, it is meaningful 
to study its consequences for learning. We formulate the learning process as 
sequential transitions of the v-vector. and let this stochastic process indirectly 
determine the response probabilities via Equation 1. 

Let v, = {v,(l), v,(2), . . ., v , ~ ( Y ) )  denote this vector on trial n and let T now 
denote a path-independent operator at the level of the v's. The transition 
equation is 

The probIem is to restrict T. By Equation 2, the v ' s  must be positive; hence, 
if Tu is a distribution of v-values, we must have 

where 0 is the r-dimensional zero vector. A second condition stems from the 
fact that v is a ratio scale; therefore, we can multiply all values in the model 
by any positive constant k. In particular, the equality in Equation 3 should 
not be affected, so we must have 

( 5 )  kTv,= Tkv,, if k > 0 .  

This has been called the independence-of-unit condition. If it is not met, 
then in principle we could determine the unit of the v-scale from learning 
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data. These first two limitations seem basic to the way our problem is for- 
mulated. However, Equations 4 and 5 do not narrow down T sufficiently, 
and, unfortunately, no other conditions seem to follow from the basic choice 
axiom. Thus, we are forced to make substantive assumptions that are sug- 
gested largely by mathematical considerations. First, we note that Equation 
5 is one of the two properties that are usually used in defining a linear 
trapsformation; the other is 

( 6 )  T(u + v*) = Tu +- Tv* , if v, o* > 0 . 
Often this is called the superposition condition. Even though it is difficult to 
give an intuitive interpretation for Equation 6 because the addition of two 
u-vectors does not correspond naturally to any experimental manipulation, we 
shall impose the condition. 

Finally, we shall assume that any positive real number is a possible u-scale 
value; hence, there is no upper bound to the possible values. This assump- 
tion together with Equations 5 and 6 implies that the transformation T must 
be a matrix operator T, in which case Equation 3 becomes the matrix equa- 
tion 

where u denotes a column vector. Equation 4 implies that T is nonsingular 
and has nonnegative entries. 

The Two-Alternative Alpha Model. For two alternatives, Equation 7 be- 
comes 

Although, in principle, we could work with Equation 8 in its full generality, 
in practice there are too many parameters. Each operator has four, and 
there is usually more than one operator. So we are forced to consider fur- 
ther restrictions. 

A question that immediately comes to mind is whether there is any speciali- 
zation that leads to an operator that is linear in the probabilities. It is not 
difficult to show (see (51) that a necessary and sufficient condition is that 
the column sums of T be equal, i.e., 

( 9 )  t ~ i  + tzi = tia + tsa . 
This specialization is the alpha model. Observe that Equation 9 implies that 
the sum of the scale values on trial n + 1 is simply tll + t l l  times the sum 
of the scale values on trial n. This means that, independent of how the 
total scale value is distributed between the two alternatives, experience on a 
given trial augments or diminishes that sum by a fixed factor; however, the 
change in the scale value for a particular alternative is not independent of 
the distribution over the alternatives. Thus, for example, if alternative 1 is 
chosen and rewarded on trial n, ~ , ' + ~ ( l )  depends not only upon ~ n ( 1 )  but also 
upon ~ ~ ( 2 )  (the propensity to choose alternative 2). 

The Ttuo-Alternative Beta Model. The last observation suggests the other 

model that we examine. We postulate that v,+,(i) depends upon un(i), but 
not upon the scale value of the other alternative. This means that the ma- 
trix T in Equation 8 must be diagonal, i.e., 

From Equation 1 and Equation 10 we have 

where B = tlljtzz. But 

Of course, 

We observe that, like the alpha model, the beta model can be expressed in 
terms of path-independent operators acting upon the probabilities. So both 
models are path-independent at both the level of the v's and the level of the 
p's, both are linear at the level of the v's, but only the alpha model is also 
linear at the level of the P ' S . ~  

For experiments in which one outcome always follows alternative 1 and 
another outcome always follows alternative 2, the transition law for fin .- $42) is 

Pn if alternative 1 occurs 

Pncl = Pn + Bl(l - Pn) 

Pn if alternative 2 occurs . 
' f i n +  A(1 - f in )  

Because p, is the probability of an error, we anticipate that B1 > 1 and 
82 > 1. 

In [5], a somewhat different derivation of the beta model i s  given, based, in essence, 
on the condition leading to Equation 10. This condition, without explicitly assuming 
superposition, then leads to Equation 10. One merit of this approach i s  that it suggests 
a third model which differs from the beta model only in that the unboundedness condi- 
tion is replaced by the condition that the v's are bounded from above. This model is 
linear and path-independent at the level of the u's,  but is not path-independent at the 
level of the p's. 
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Estimation of Beta-Model Parameters 

To estimate model parameters from a set of data, it is useful-and with 
three or more parameters, almost essential-to have explicit formulas for 
properties of the model as functions of its parameters. These functions may 
then be equated to the corresponding statistics of the data and solved to give 
estimates of the parameters. Preferably, these expressions should be in 
closed form, but infinite series are acceptable since tables can be prepared. 
For the alpha model restricted in various ways, a number of closed expres- 
sions are known and several tables have been published. For the beta model, 
the situation is far less satisfactory because its nonlinearity makes it very 
difficult to calculate expected values. In fact, for two alternatives with 
partial reinforcement of each, no computable expression is known for any 
property of the model. If, however, we are willing to confine our attention 
to those experiments in which one of the alternatives, say 2, is never re- 
warded, then a series can be developed for the expected number of trials 
before the other alternative is chosen. This can be used not only with ex- 
periments in which alternative 1 is always rewarded and 2 never rewarded 
(100 : 0 experiments), but also with experiments in which alternative 1 is 
rewarded with probability TL while alternative 2 is never rewarded (50: 0 ex- 
periments, for example). 

Let pn denote the probability that alternative 2 is chosen (i.e., an error is 
made) on trial n, and let v + 1 denote the trial number when alternative 1 
is first chosen (i.e., the trial number of the first success). Thus, v denotes 
the number of trials before the first success. Because these trials are in- 
dependent, 

Hence, 

Let denote the beta-model parameter of the (nonreward) operator that is 
always applied when alternative 2 is chosen. By induction on Equation 12 it 
is clear that for any n 5 v -t 1, 

where we have defined v = v1(2)/vl(l) = P1/(1 - PI). Substituting Equation 14 
in Equation 13, we obtain 

The final infinite series for the expected number of trials before the first 
success, which is an example of a function we denote by L(p, B), can be com- 
puted to any degree of accuracy for any p and 8. This is not simple, how- 
ever, when both parameters are near l ;  for example, when p = 0.9995 and 
B = 1.03, one needs 227 terms to obtain accuracy in the third decimal place. 
For the experiments that we will analyze, p is very close to 1; hence, we were 
led to have a table of L(p, B) prepared by the Univac computer a t  the Univer- 
sity of Pennsylvania. The table is given at the end of this paper. 

With a value of E(v), Equation 15 imposes a relationship between p and 3, 
but it does not specify either parameter uniquely. Thus, one must either 
estimate one of the parameters independently or undertake a trial-and-error 
exploration of the parameter space using Monte Carlo methods (to match 
other statistics of the data, such as the total number of errors). For example, 
in a 100 : 0 experiment, if there are sufficiently many subjects that the choices 
on trial 1 can be used to estimate p accurately, then the trials to the first 
success determine the nonreward parameter Bz. This still leaves the param- 
eter B1 of the reward operator unspecified. 

Now observe that if we go to a final trial, N, we can estimate p~ from 
the observed number of choices on that trial, and if we proceed backwards 
from that trial to the last error, then only the reward operator will be ap- 
plied during these trials. Thus, L(l - pnr, B1) gives the expected number of 
trials between the last error and the final trial. Matching this expected value 
to the observed value provides an estimate of BI.  

The method just described does not require that we use the estimated prob- 
ability on the first and last trials, and in fact we do not. Rather, we used 
the observed mean learning curve to judge the trial numbers (not necessarily 
integers) for which the proportion of errors is 0.95 and 0.05. The mean 
number of trials to the first success and to the last failure from these trials, 
respectively, was determined, and B1 and B2 were thereby estimated from 
the table of L(p, B), The initial probability, PI, was estimated by applying 
the inverse of the nonreward operator from the 0.95 trial to the first trial. 
For example, if the 0.95 trial is 8 and bz = 1.3, then v8 = 0.9510.05 = 19 and 
SO ~1 = (1.3)8 (19) = 154.98. Thus, 

The choice of the points 0.95 and 0.05 is based upon two considerations. 
First, the probability should not be very far from 1 if the inverse of the 
nonreward operator can be legitimately applied to estimate the initial prob- 
ability. Second, if p is very near 1, the mean and variance of the trials to 
the first success becomes very large, and the estimate of 13 will not be very 
stable. 
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This method has the severe drawback that the mean learning curve is fairly 
flat at these two points, so that the estimated trial numbers are rather sen- 
sitive to what smooth curve is passed through the data points. This vari- 
ability is reflected in a considerable variability of the estimated parameters. 
It is, therefore, essential that some check be made on the estimates before 
they are taken too seriously. The one that we use is whether statistics com- 
puted from Monte Carlos using the estimates match the corresponding data 
statistics. A more refined but time-consuming procedure is to determine the 
theoretical mean curve from the first set of Monte Carlos, use this to reesti- 
mate the 0.05 and 0.95 trials, calculate from the data the new mean number 
of trials to the first success and to the last failure, and then reestimate the 
parameters. Using these new parameters, a second set of Monte Carlos is 
run and the whole process is repeated a number of times until convergence 
is obtained. 

We now describe three different experiments reported elsewhere. For each 
of these experiments we estimate parameter values for the beta model. For 
two of the experiments, we use these estimates to compute Monte Carlo 
analogues of the data.3 Statistics from these computations are then compared 
with the experimental data and with previously reported statistics of the 
alpha model. 

An AvoidanceLearning Experiment 

The Experiment. Solomon and Wynne reported an experiment [6] in which 
dogs were trained to jump a barrier in a shuttlebox to avoid or escape from 
a traumatizing electric shock. Prior to the onset of the shock a discrimina- 
tive stimulus was presented to the animals, and, provided they had learned, 
they could vault the barrier and consistently avoid shock. The complete 
sequence of escapes and avoidances for each of the 30 dogs is presented in 
111. 

Parameter Estimation. By using the technique outlined in the preceding 
section, parameters were estimated. One point of interest should be made. 
The initial probability of an avoidance, estimated from the first trial of the 
experiment, is 0.0. A feature of the beta model is that, unless the initial 
probability of a success is different from zero, learning will not occur. For 
this reason, the proportion on the second trial was used to estimate Be, and 
t>en these estimates were used to estimate pl.  The results obtained were 
P I  = 0.06, B1 = 1.2, I% = 1.7. Monte Carlo computations were then made. 

Goodness-of-Fit. In Table 1 we record 15 statistics computed fro] .i the ex- 
perimental data and from the beta-model Monte Carlos, along with the statis- 
tics previously reported for the alpha model. In Chapter 15 the corresponding 
statistics for seven other models are given. 

All Monte Carlo computations in this study were done a t  the Computer Center, 
University of Pennsylvania. For this purpose, a general program for stochastic learn- 
ing models was developed by Dr. Saul Gorn and Mr. Peter Z. Ingerman. 

TABLE 1 

Comparison of Several Statistics of the Solomon-Wynne Avoidance-Training 
Data with the Statistics Obtained from Monte Carlo Computations 

with the Alpha and Beta Models 

A Relearning Experiment 

Real Dogs Alpha Model Beta Model 
Statistic 1 Mean S. D. 1 2% 1 Stat-Dogs Mean S.D. 

The Experiment. Galanter and Bush (Chapter 14) conducted a T-maze experi- 
ment in which rats were rewarded whenever they turned right, and were never 
rewarded when they turned left. This training period continued a t  a rate of 
three trials a day for 48 trials. For the next 48 trials, food reward was al- 
ways on the left and never on the right. A third and fourth period of 48 
trials each were run with food reward on the right again, and then on the 
left. 

Parumeter Estimation. Our concern with these data is only the order of 
magnitude of the two learning parameters; no attempt will be made to fit 
the data in detail. As pointed out earlier, however, without such a check on 
the estimates there is some ambiguity about their exact values; nonetheless, 
certain qualitative conclusions can be made. With the use of two different 
methods to estimate the mean learning curve, estimates lying between 1.02 
and 1.14 were obtained for B1 from the latter parts of the four periods, and 
estimates between 1.44 and 2.6 were obtained for Bs from the initial parts of 
periods 2, 3, and 4. It is clear, then, that the nonreward parameter is 
appreciably larger than the reward parameter, as was found with the Solomon 
and Wynne data. 

Trials before first avoidance 

Trials before second avoidance 

Total number of shocks 

Trials before last shock 

Number of alternations 

Length of longest run of shocks 

Trials before first run of four 
avoidances 

An Overlearning Experiment 

The Experiment. In Chapter 14, a second T-maze experiment is reported. The 
procedure was identical to the relearning experiment except that the rats were 
rewarded for turning to the right-hand side of the maze for 144 trials, and 
then they were run an additional 48 trials with food reward always on the 
left. The main effect of the overlearning is to increase the final probability 
in the first period and hence the initial probability of error in the second. 

3.93 1.74 

6.40 1.33 

7.80 1.10 

13.57 4.17 

6.50 2.01 

4.30 1.29 

10.13 3.00 

4.50 2.25 

6.47 2.62 

7.80 2.52 

11.33 4.36 
5.47 2.72 

4.73 2.03 

9.70 4.14 

4.13 2.08 

6.20 2.06 

7.60 2.27 

12.53 4.78 

5.87 2.11 

4.33 1.89 

9.47 3.48 
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Parameter Estimation. We estimated the beta-model parameters for period 
2 with the method used before. The values are j1=0.996, bl= 1.10, ba= 1.32. 
As found in the previous two experiments, ia is larger than 61. However, b2 
in this experiment is smaller than it was in the previous T-maze experiment. 

Goodness-of-Rt. AS before, Monte Carlo computations were made and 
various statistics computed. In Table 2, these are compared with corres- 
ponding statistics of the data and population values computed from the alpha 
model. The mean performance curves for the experimental animals and 
for the Monte Carlo runs are shown in Fig. 1. 

TRIALS (n) 

FIGURE-I. Period 2 of the overlearning experiment showing the average re- 
sponse frequencies in three-trial blocks for the experimental ani- 
mals (filled circles) and for the beta-model Monte Carlo analogs 
(open circles). 

TABLE 2 

Comparison of Several Statistics of the Overlearning Experiment 
with Statistics Obtained for the Two Models 

Statistic 

Mean total errors 
Variance of total errors 

Mean trials before first success 
Mean number of error runs 
Mean error runs of length 1 

Mean error runs of length 2 

Mean error runs of length 3 

Mean error runs of length 4 
Mean error runs of length 5 

Real Rats 

Discussion 

One of the more interesting results of the beta-model analyses just present- 
ed is that the estimates of the nonreward parameter, Bn, are uniformly larger 
than the corresponding estimates of the reward parameter, 131. The alpha- 
model analyses, on the other hand, lead to the opposite conclusion about 
the relative effects of reward and nonreward for the first and third experi- 
ments described. Therefore, it is evident that one's inferences about the 
relative effectiveness of reward and nonreward (or avoidance and escape) are 
" model-bound." If such inferences could be made by using a nonparametric 
technique which makes no assumptions other than those embodied in a large 
class of models (including the alpha and beta models), then evidence in sup- 
port of one model or the other would be obtained. Unfortunately, we have 
not found a satisfactory technique for this purpose; we must rely on other 
evidence if we wish to decide which model is the more satisfactory. 

We compared the alpha and beta models by analyzing in detail two ex- 
periments. The alpha model is in very close agreement with the avoidance- 
learning data on all properties examined; the beta-model figures are likewise 
very close to the data, except for the variance of total shocks. Thus, the 
alpha model has a slight edge on the beta model for these data. On the 
other hand, the beta model gives a decidedly more satisfactory description of 
the data on retraining after overlearning. With this experiment, the alpha 
model appears to be in serious trouble, particularly in predicting the variance 
of the total number of errors. 

The variance of total errors is a very useful statistic for discriminating 
between the two models. As was pointed out to us by S. Sternberg, this is 
a consequence of the different roles played by reward and nonreward in the 
two analyses. When reward is less effective than nonreward, the process has 
"negative feedback ": if an animal receives a large number of rewards dur- 
ing the early trials, his probability of error remains high and so he will make 
few rewarded responses during the later trials. Similarly, if he makes many 

(Expected 
Values) 

Beta Model 
(Stat-Rats) 
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errors early, his probability of error decreases to a low value, and so few 
errors are made later. This effect tends to equalize the total errors made 
by different animals. On the other hand, when reward is more effective 
than nonreward, " positive feedback " exists and so one would expect a large 
variance of the total number of errors. 

If reward and nonreward are assumed to have equal effects, each model 
predicts a specified variance of total errors; these predictions can serve as 
baselines in pursuing the argument given in the previous paragraph. For- 
mulas for the mean and variance of total errors for the equal-alpha model 
are well known (see Chapter 10). For the relearning period of the overlearn- 
ing experiment, we observed a mean of 24.7. Equating this to the expected 
value and taking p1 = 1, we estimate a: to be 0.96. The variance is then 
computed to be 9.9. For the equal-beta model,4 using the observed mean 
and pl = 0.996, the value previously obtained for the beta model, we estimate 
B to be 1.25. This leads to a computed variance of 4.5. Both of these com- 
puted variances are consistent with our arguments about how the relative 
effects of reward and nonreward alter the variance. The unequal-alpha mod- 
el with reward more effective led to a variance of 26.6, compared with the 
9.9 figure for the equal-alpha model. The unequal-beta model with nonreward 
more effective gave a variance of 3.3, compared with the 4.5 value for the 
equal-beta model. (All computations fixed the mean total errors a t  the ob- 
served value of 24.7.) 

A desirable property of any learning model is that the event parameters 
should he independent of experimental variables such as  the number of trials 
of previous training. This property has been termed " event invariance " or. 
"parameter invariance" ( [ I ] ,  Chapter 14). As noted in Chapter 14, the alpha- 
model analyses of the two learning experiments described above do not exhibit 
this property. Likewise, the beta-model analyses of these same data fail to sup- 
port the hypothesis of parameter invariance in that model. The data on re- 
learning after overtraining lead to a nonreward parameter that is less effective 
than that obtained from the data on relearning after moderate training. 

Additional evidence for lack of parameter invariance in the beta model is 
found by examining the data from the first period of the overlearning ex- 
periment. Proceeding backwards from the 0.95 point on the learning curve 
(trial 31), we estimated BL to be 1.20. But, when we moved backwards from 
the end of the first period, using the estimate = 0.996 obtained from the 

Major simplifications in the beta model result from the special assumption B1=82=8, 
which implies that reward and nonreward have equal effects. The probability of an 
error on trial n has the fixed value 

p, = pil[pl + (1 - PI)B~-']  , 
where ,9 > 1. Defining a random variable xn that has the value 1 when an error occurs 
on trial n and the value 0 otherwise, we obtain for the total number of errors U L = C X ~  
(all summations in this note are from 1 to w).  The expected value is 

E(uI) = C E(sn) = Cpn = XIPI!IPI + (1 - ~ l ) B ~ - l l l  - 
If we replace the sum with an integral from 1 to w ,  we obtain the approximation 
E(u1) - log (1 - pl)/log 8.  The variance is 

var (ul) = C var ( ~ n )  = C p n ( l  - pn) = C h ( l  - pl)Bn-'/[pi t- (1 - ~ 1 ) 8 " - ' 1 ~ ~  . 
The integral approximation is var (ul) plllog B. 

beginning of the second period, we obtained PII = 1.015. Thus, reward seems 
to have much less effect during the late trials of overlearning than it does 
anywhere else in the data. 

In summary, we have uncovered two pieces of evidence against the beta 
model from the three experiments analyzed: (a) underestimates of the vari- 
ance of total errors, and (b) lack of parameter invariance. There are two 
reasons, however, why we feel that these apparent weaknesses of the model 
need not be taken too seriously. The first has to do with the experiments 
themselves. It is reported in Chapter 14 that the data from the two T- 
maze experiments, both of which had three trials a day, exhibited a very 
significant daily recovery effect, at least for the last 48 trials. The extent 
to which this phenomenon affects the parameter estimates and the various 
measures of goodness-of-fit is not known, but we would not be surprised if 
it were quite serious. The second reason for tempering the evidence against 
the beta model is our implicit assumption of a single unique value of the 
initial probability for each period of each experiment. Unlike the alpha mod- 
el, the beta model is extremely sensitive to p1 in the neighborhood of 1 or 
0. Therefore, a distribution of p1 with very small spread might have a 
strong effect on subsequent analyses. Furthermore, we know that the model 
implies a non-zero-variance distribution of p's at the end of a training period, 
and therefore at the beginning of the following period. One might hope, 
therefore, that the apparent evidence against the beta model would disappear 
when both the experiments and the analyses are refined. 

Alternatively, however, the more refined experiments and analyses may 
continue to exhibit a lack of parameter invariance. In particular, the 
tail of the learning curve in an overtraining experiment may be considerably 
flatter than predicted by the beta model with parameters estimated from 
other regions. (It should be noted that with parameter values of the order 
of 1.1, the beta model would predict an initial probability of 0.999,999 at the 
beginning of period 2 of the relearning experiment.) If this is the case, 
then it will be necessary to devise models that exhibit more reduction in the 
effect of experience as the probability of choice approaches 0 or 1. 

This study represents the first detailed inquiry into the adequacy of the 
beta model. More such studies are needed before a final evaluation can be 
made. To facilitate the analyses, further mathematical work on model prop- 
erties and related estimation problems is needed. 

Table of L(p, P )  
The following five-page table of the function 

was prepared by the Computer Center, University of Pennsylvania. We are 
indebted to Dr. Saul Corn, Director of the Center, and to Mr. Peter Ingerman, 
who wrote the program. 

The references to this chapter follow the table. 
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